Evaluating Interdisciplinary Contributions to Synchrotron Radiation Studies: Scientometric Insights into Novelty and Disruption
Keywords:
Experimental Stations; Interdisciplinarity; Novelty; SciBERT; DisruptionAbstract
Research infrastructures consisting of multiple experimental stations and functioning as large-scale scientific facilities are critical to advancing scientific understanding and addressing complex, interdisciplinary challenges. This study explores the relationship between the interdisciplinarity of these stations and the novelty and disruption of their academic outputs, using the US. Department of Energy's Advanced Photon Source (APS) as a case study. We analyzed 29,692 papers produced by 53 experimental stations of the APS from 1992 to 2020, each of which received more than five citations by 2023. The novelty of academic outputs was assessed using SciBERT to measure semantic similarities between titles within the citation network, while disruption was measured with a relative dependency index. Interdisciplinarity was quantified by variety, balance, disparity and interdisciplinary integration index. The results of the ordinary least squares (OLS) regression show a negative correlation between novelty and disciplinary disparity and a significant negative correlation between disruption and interdisciplinarity. These results suggest that interdisciplinary approaches promote the exchange of ideas and holistic understanding between disciplines, but that specialized expertise remains critical for groundbreaking research. This balance encourages further investigation to optimize the interplay between interdisciplinary collaboration and disciplinary specialization to drive scientific progress.
References
Adeyemi, H. (1996). Academic Research Infrastructure: Acquisition of Instrumentation to Provide Scientific and Data Visualization Capability at Clark Atlanta University [Awarded Grant].
Amplayo, R. K., Hong, S., & Song, M. (2018). Network-based approach to detect novelty of scholarly literature [Article]. INFORMATION SCIENCES, 422, 542-557. https://doi.org/10.1016/j.ins.2017.09.037
APS. APS Publications. https://www.aps.anl.gov/Science/Publications
Arthur, W. B. (2010). The Nature of Technology: What It Is and How It Evolves. Penguin Adult. https://books.google.com.tw/books?id=phkgssCTlpgC
Arts, S., Hou, J., & Gomez, J. C. (2021). Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures [Article]. Research Policy, 50(2), Article 104144. https://doi.org/10.1016/j.respol.2020.104144
Balsmeieri, B., Assaf, M., Chesebro, T., Fierro, G., Johnson, K., Johnson, S., . . . Fleming, L. (2018). Machine learning and natural language processing on the patent corpus: Data, tools, and new measures [Article]. JOURNAL OF ECONOMICS & MANAGEMENT STRATEGY, 27(3), 535-553. https://doi.org/10.1111/jems.12259
Beck, S., Mahdad, M., Beukel, K., & Poetz, M. (2019). The Value of Scientific Knowledge Dissemination for Scientists-A Value Capture Perspective [Article]. Publications, 7(3), Article 54. https://doi.org/10.3390/publications7030054
Bittmann, F., Tekles, A., & Bornmann, L. (2022). Applied usage and performance of statistical matching in bibliometrics: The comparison of milestone and regular papers with multiple measurements of disruptiveness as an empirical example [Article]. Quantitative Science Studies, 2(4), 1246-1270. https://doi.org/10.1162/qss_a_00158
Bornmann, L., Devarakonda, S., Tekles, A., & Chacko, G. (2020). Are disruption index indicators convergently valid? The comparison of several indicator variants with assessments by peers [Article]. Quantitative Science Studies, 1(3), 1242-1259. https://doi.org/10.1162/qss_a_00068
Bornmann, L., & Tekles, A. (2019). Disruption index depends on length of citation window [Article]. Profesional De La Informacion, 28(2), Article e280207. https://doi.org/10.3145/epi.2019.mar.07
Boudreau, K. J., Guinan, E. C., Lakhani, K. R., & Riedl, C. (2016). Looking Across and Looking Beyond the Knowledge Frontier: Intellectual Distance, Novelty, and Resource Allocation in Science [Article]. Management Science, 62(10), 2765-2783. https://doi.org/10.1287/mnsc.2015.2285
Bu, Y., Waltman, L., & Huang, Y. (2021). A multidimensional framework for characterizing the citation impact of scientific publications [Article]. Quantitative Science Studies, 2(1), 155-183. https://doi.org/10.1162/qss_a_00109
Christensen, C. M. (2015). The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business Review Press. https://books.google.com.hk/books?id=lURBCgAAQBAJ
Fabre, R., Egret, D., Schopfel, J., & Azeroual, O. (2021). Evaluating the scientific impact of research infrastructures: The role of current research information systems [Article]. Quantitative Science Studies, 2(1), 42-64. https://doi.org/10.1162/qss_a_00111
Fecher, B., Kahn, R., Sokolovska, N., Voelker, T., & Nebe, P. (2021). Making a Research Infrastructure: Conditions and Strategies to Transform a Service into an Infrastructure [Article]. Science and Public Policy, 48(4), 499-507. https://doi.org/10.1093/scipol/scab026
Foster, D. (2018). Long, short, and efficient titles for research articles.
Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and Innovation in Scientists' Research Strategies [Review]. American Sociological Review, 80(5), 875-908. https://doi.org/10.1177/0003122415601618
Funk, R. J., & Owen-Smith, J. (2017). A Dynamic Network Measure of Technological Change [Article]. Management Science, 63(3), 791-817. https://doi.org/10.1287/mnsc.2015.2366
Hamers, L., Hemeryck, Y., Herweyers, G., Janssen, M., Keters, H., Rousseau, R., & Vanhoutte, A. (1989). Similarity Measures in Scientometric Research - The Jaccard Index Versus Salton Cosine Formula [Article]. Information Processing & Management, 25(3), 315-318. https://doi.org/10.1016/0306-4573(89)90048-4
Heffernan, K., & Teufel, S. (2018). Identifying problems and solutions in scientific text [Article]. Scientometrics, 116(2), 1367-1382. https://doi.org/10.1007/s11192-018-2718-6
Helliwell, J. R., & Mitchell, E. P. (2015). Synchrotron radiation macromolecular crystallography: science and spin-offs [Review]. Iucrj, 2, 283-291. https://doi.org/10.1107/s205225251402795x
Hentschel, K. (2015). A periodization of research technologies and of the emergency of genericity [Article]. Studies in History and Philosophy of Modern Physics, 52, 223-233. https://doi.org/10.1016/j.shpsb.2015.07.009
Jeon, D., Ahn, J. M., Kim, J., & Lee, C. (2022). A doc2vec and local outlier factor approach to measuring the novelty of patents [Article]. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 174, Article 121294. https://doi.org/10.1016/j.techfore.2021.121294
Jeon, D., Lee, J., Ahn, J. M., & Lee, C. (2023). Measuring the novelty of scientific publications: A fastText and local outlier factor approach [Article]. Journal of Informetrics, 17(4), Article 101450. https://doi.org/10.1016/j.joi.2023.101450
Jiang, Y., & Liu, X. (2023). A construction and empirical research of the journal disruption index based on open citation data [Article]. Scientometrics, 128(7), 3935-3958. https://doi.org/10.1007/s11192-023-04737-y
Jones, B. F., Wuchty, S., & Uzzi, B. (2008). Multi-University Research Teams: Shifting Impact, Geography, and Stratification in Science [Article]. Science, 322(5905), 1259-1262. https://doi.org/10.1126/science.1158357
Kondo, T., Nanba, H., Takezawa, T., & Okumura, M. (2011, 2011//). Technical Trend Analysis by Analyzing Research Papers’ Titles. Human Language Technology. Challenges for Computer Science and Linguistics, Berlin, Heidelberg.
Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations [Article]. Journal of Informetrics, 5(1), 87-100. https://doi.org/10.1016/j.joi.2010.09.002
Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2019). Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient [Article]. Journal of Informetrics, 13(1), 255-269. https://doi.org/10.1016/j.joi.2018.12.006
Lu, W., Huang, S., Yang, J., Bu, Y., Cheng, Q., & Huang, Y. (2021). Detecting research topic trends by author-defined keyword frequency [Article]. Information Processing & Management, 58(4), Article 102594. https://doi.org/10.1016/j.ipm.2021.102594
Luo, Z., Lu, W., He, J., & Wang, Y. (2022). Combination of research questions and methods: A new measurement of scientific novelty [Article]. Journal of Informetrics, 16(2), Article 101282. https://doi.org/10.1016/j.joi.2022.101282
Matsumoto, K., Shibayama, S., Kang, B., & Igami, M. (2021). Introducing a novelty indicator for scientific research: validating the knowledge-based combinatorial approach [Article]. Scientometrics, 126(8), 6891-6915. https://doi.org/10.1007/s11192-021-04049-z
Mutz, R. (2022). Diversity and interdisciplinarity: Should variety, balance and disparity be combined as a product or better as a sum? An information-theoretical and statistical estimation approach [Article]. Scientometrics, 127(12), 7397-7414. https://doi.org/10.1007/s11192-022-04336-3
OECD. (2020). OPTIMISING THE OPERATION AND USE OF NATIONAL RESEARCH INFRASTRUCTURES.
Park, M., Leahey, E., & Funk, R. J. (2023). Papers and patents are becoming less disruptive over time [Article]. Nature, 613(7942), 138-+. https://doi.org/10.1038/s41586-022-05543-x
Porter, A. L., & Chubin, D. E. (1985). An Indicator of Cross-Disciplinary Research [Article]. Scientometrics, 8(3-4), 161-176. https://doi.org/10.1007/bf02016934
Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity [Article]. Scientometrics, 72(1), 117-147. https://doi.org/10.1007/s11192-007-1700-5
Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time [Article]. Scientometrics, 81(3), 719-745. https://doi.org/10.1007/s11192-008-2197-2
Rosenberg, N. (1992). Scientific Instrumentation and University-Research [Article]. Research Policy, 21(4), 381-390. https://doi.org/10.1016/0048-7333(92)90035-3
Schumpeter, J. A. (1961). The Theory of Economic Development: An Inquiry Into Profits, Capital, Credit, Interest, and the Business Cycle. Oxford University Press. https://books.google.com.hk/books?id=SyvsLQEACAAJ
Sciences, N. A. o., Engineering, N. A. o., & Medicine, I. o. (2005). Facilitating Interdisciplinary Research. The National Academies Press. https://doi.org/doi:10.17226/11153
Shibayama, S., Yin, D., & Matsumoto, K. (2021). Measuring novelty in science with word embedding [Article]. PLOS ONE, 16(7), Article e0254034. https://doi.org/10.1371/journal.pone.0254034
Soderstrom, K. R., Astrom, F., & Hallonsten, O. (2022). Generic instruments in a synchrotron radiation facility [Article]. Quantitative Science Studies, 3(2), 420-442. https://doi.org/10.1162/qss_a_00190
Sreenivasan, S. (2013). Quantitative analysis of the evolution of novelty in cinema through crowdsourced keywords [Article]. SCIENTIFIC REPORTS, 3, Article 2758. https://doi.org/10.1038/srep02758
Staley, R. (2002). Instrumentation between science, state and industry, vol 22 [Book Review]. Social Studies of Science, 32(3), 469-476, Article Unsp [0306-3127(200206)32:3;469-476;027786]. https://doi.org/10.1177/0306312702032003005
Stirling, A. (2007). A general framework for analysing diversity in science, technology and society [Review]. Journal of the Royal Society Interface, 4(15), 707-719. https://doi.org/10.1098/rsif.2007.0213
Sugimoto, C. R., Ni, C., Russell, T. G., & Bychowski, B. (2011). Academic Genealogy as an Indicator of Interdisciplinarity: An Examination of Dissertation Networks in Library and Information Science [Article]. Journal of the American Society for Information Science and Technology, 62(9), 1808-1828. https://doi.org/10.1002/asi.21568
Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical Combinations and Scientific Impact [Article]. Science, 342(6157), 468-472. https://doi.org/10.1126/science.1240474
Varga, A. (2018). Novelty and Foreseeing Research Trends: The Case of Astrophysics and Astronomy [Article]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 236(1), Article 21. https://doi.org/10.3847/1538-4365/aab765
Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patent-based indicators [Article]. Research Policy, 45(3), 707-723. https://doi.org/10.1016/j.respol.2015.11.010
Wang, S., Ma, Y., Mao, J., Bai, Y., Liang, Z., & Li, G. (2023). Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities [Article]. Journal of the Association for Information Science and Technology, 74(2), 150-167. https://doi.org/10.1002/asi.24719
Westerski, A., & Kanagasabai, R. (2019). In search of disruptive ideas: outlier detection techniques in crowdsourcing innovation platforms. International Journal of Web Based Communities, 15(4), 344-367. https://doi.org/10.1504/IJWBC.2019.103185
Wu, L., Wang, D., & Evans, J. A. (2019). Large teams develop and small teams disrupt science and technology [Article]. Nature, 566(7744), 378-+. https://doi.org/10.1038/s41586-019-0941-9
Yan, Y., Tian, S., & Zhang, J. (2020). The impact of a paper's new combinations and new components on its citation [Article]. Scientometrics, 122(2), 895-913. https://doi.org/10.1007/s11192-019-03314-6
Yang, A. J., Deng, S., Wang, H., Zhang, Y., & Yang, W. (2023). Disruptive coefficient and 2-step disruptive coefficient: Novel measures for identifying vital nodes in complex networks [Article]. Journal of Informetrics, 17(3), Article 101411. https://doi.org/10.1016/j.joi.2023.101411
Zhang, H., Zhang, C., & Wang, Y. (2024). Revealing the technology development of natural language processing: A Scientific entity-centric perspective [Article]. Information Processing & Management, 61(1), Article 103574. https://doi.org/10.1016/j.ipm.2023.103574
Zhang, L., & Leydesdorff, L. (2021). The Scientometric Measurement of Interdisciplinarity and Diversity in the Research Portfolios of Chinese Universities [Article]. Journal of Data and Information Science, 6(4), 13-35. https://doi.org/10.2478/jdis-2021-0027
Zhang, L., Wang, D., & Zhang, L. (2019). Research of The Influence of Interdisciplinarity and Team Cooperation on the Scientific Effects Based on Large-scale Scientific Facilities. Journal of Management World, 35(12), 199-212. https://doi.org/10.19744/j.cnki.11-1235/f.2019.0173
Zhang, Y., Cai, X., Fry, C. V., Wu, M., & Wagner, C. S. (2021). Topic evolution, disruption and resilience in early COVID-19 research [Article]. Scientometrics, 126(5), 4225-4253. https://doi.org/10.1007/s11192-021-03946-7
Zhou, H., Guns, R., & Engels, T. C. E. (2022). Are social sciences becoming more interdisciplinary? Evidence from publications 1960-2014 [Article]. Journal of the Association for Information Science and Technology, 73(9), 1201-1221. https://doi.org/10.1002/asi.24627
Zhou, Y., Dong, F., Liu, Y., & Ran, L. (2021). A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool [Article]. Scientometrics, 126(2), 969-994. https://doi.org/10.1007/s11192-020-03797-8
Zhou, Y., Lin, H., Liu, Y., & Ding, W. (2019). A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry [Article]. Scientometrics, 120(1), 167-185. https://doi.org/10.1007/s11192-019-03126-8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Qualitative and Quantitative Methods in Libraries

This work is licensed under a Creative Commons Attribution 4.0 International License.